首页 > 要闻 >
因式分解公式法教学视频(因式分解公式)

时间:2023-11-21 23:20:15 编辑:

导读 大家好,小乐来为大家解答以上的问题。因式分解公式法教学视频,因式分解公式这个很多人还不知道,现在让我们一起来看看吧!1、1.运用公式法

大家好,小乐来为大家解答以上的问题。因式分解公式法教学视频,因式分解公式这个很多人还不知道,现在让我们一起来看看吧!

1、1.运用公式法   在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用。

2、即为因式分解中常用的公式,例如:   (1)a2-b2=(a+b)(a-b);   (2)a2±2ab+b2=(a±b)2;   (3)a3+b3=(a+b)(a2-ab+b2);   (4)a3-b3=(a-b)(a2+ab+b2).   下面再补充几个常用的公式:   (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;   (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);   (7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;   (8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;   (9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1)。

3、其中n为奇数.   运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.   例1 分解因式:   (1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;   (2)x3-8y3-z3-6xyz;   (3)a2+b2+c2-2bc+2ca-2ab;   (4)a7-a5b2+a2b5-b7.   解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)        =-2xn-1yn[(x2n)2-2x2ny2+(y2)2]        =-2xn-1yn(x2n-y2)2        =-2xn-1yn(xn-y)2(xn+y)2.   (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)       =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).   (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2      =(a-b)2+2c(a-b)+c2      =(a-b+c)2.   本小题可以稍加变形。

4、直接使用公式(5),解法如下:   原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)     =(a-b+c)2   (4)原式=(a7-a5b2)+(a2b5-b7)       =a5(a2-b2)+b5(a2-b2)       =(a2-b2)(a5+b5)       =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)       =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)   例2 分解因式:a3+b3+c3-3abc.   本题实际上就是用因式分解的方法证明前面给出的公式(6).   分析 我们已经知道公式 (a+b)3=a3+3a2b+3ab2+b3   的正确性,现将此公式变形为 a3+b3=(a+b)3-3ab(a+b).   这个式也是一个常用的公式。

5、本题就借助于它来推导.   解 原式=(a+b)3-3ab(a+b)+c3-3abc       =〔(a+b)3+c3〕-3ab(a+b+c)       =(a+b+c)〔(a+b)2-c(a+b)+c2]-3ab(a+b+c)       =(a+b+c)(a2+b2+c2-ab-bc-ca).   说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为   a3+b3+c3-3abc          显然。

6、当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0。

7、即a3+b3+c3≥3abc,而且,当且仅当a=b=c时。

8、等号成立.   如果令x=a3≥0,y=b3≥0,z=c3≥0。

9、则有   等号成立的充要条件是x=y=z.这也是一个常用的结论.   例3 分解因式:x15+x14+x13+…+x2+x+1.   分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0。

10、由此想到应用公式an-bn来分解.   解 因为   x16-1=(x-1)(x15+x14+x13+…x2+x+1),   所以      说明 在本题的分解过程中,用到先乘以(x-1)。

11、再除以(x-1)的技巧,这一技巧在等式变形中很常用.。

本文到此分享完毕,希望对大家有所帮助。

标签:

免责声明:本文由用户上传,如有侵权请联系删除!

© 2008-2024 All Rights Reserved .乐拇指 版权所有

网站地图 | 百度地图