什么是一次函数解析式(什么是一次函数)

时间:2024-02-13 13:20:11 编辑:

导读 大家好,小乐来为大家解答以上的问题。什么是一次函数解析式,什么是一次函数这个很多人还不知道,现在让我们一起来看看吧!1、【读音】yī

大家好,小乐来为大家解答以上的问题。什么是一次函数解析式,什么是一次函数这个很多人还不知道,现在让我们一起来看看吧!

1、【读音】yī cì hán shù 【解释】函数的基本概念:,在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,那么我们就说y是x的函数,也可以说x是自变量,y是因变量.表示为y=kx+b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况.可表示为y=kx [编辑本段]基本定义 变量:变化的量 常量:不变的量 自变量k和X的一次函数y有如下关系:y=kx+b (k为任意不为零常数,b为任意常数) 当x取一个值时,y有且只有一个值与x对应.如果有2个及以上个值与x对应时,就不是一次函数.x为自变量,y为因变量,k为常量,y是x的一次函数.特别的,当b=0时,y是x的正比例函数.即:y=kx (k为常量,但K≠0)正比例函数图像经过原点.定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合.相关性质 函数性质 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k≠0) (k不等于0,且k,b为常数) 2.当x=0时,b为函数在y轴上的,坐标为(0,b).3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°) 形、取、象、交、减.4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.5.当两直线中的k相同,b也相同时,两直线重合 当两直线中的k相同,b不相同时,两直线平行 当两直线中的k不相同,b不相同时,两直线相交 当两直线中的k不相同,b相同时,两直线交于y轴上的同一点(0,b) 图像性质 1.作法与图形:通过如下3个步骤 (1)列表 (2)描点;[一般取两个点,根据“两点确定一条直线”的道理]; (3)连线,可以作出一次函数的图像——一条直线.因此,作一次函数的图像只需知道2点,并连成直线即可.(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0).(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点.3.函数不是数,它是指某一变化过程中两个变量之间的关系.4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大; 当k<0时,直线必通过第二、四象限,y随x的增大而减小.y=kx+b时:当 k>0,b>0,这时此函数的图象经过第一、二、三象限.当 k>0,b。

本文到此分享完毕,希望对大家有所帮助。

标签:

免责声明:本文由用户上传,如有侵权请联系删除!

© 2008-2024 All Rights Reserved .乐拇指 版权所有

网站地图 | 百度地图